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Abstract
A model for the transient electrochemical performance of a conical pore in the
cathode catalyst layer of a low–Pt PEM fuel cell is developed. The pore is sep-
arated from the Pt surface by a thin ionomer film. A transient equation for the
oxygen diffusion along the pore coupled to the proton conservation equation in
the ionomer film is derived. Numerical solution of the static equations shows
superior electrochemical performance of a conical pore as compared to cylin-
drical pore with equivalent electrochemically active surface area. Equations for
the pore impedance are derived by linearization and Fourier–transform of tran-
sient equations. The conical pore impedance is calculated and compared to the
impedance of equivalent cylindrical pore. It is shown that the pore shape affects
the frequency dependence of impedance.
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1 INTRODUCTION

Cathode catalyst layer (CCL) is a key component of poly-
mer electrolyte fuel cells. In this layer, oxygen meets
protons and electrons to convert the charged species into
water. To maximize catalyst surface area for the oxygen
reduction reaction (ORR), the CCL is designed as a porous
media comprising of three interpenetrating clusters of Pt/C
particles, ionomer for proton transport and void pores for
oxygen transport.
Understanding and engineering optimal CCL is a key

problem in PEMFC technology (see recent reviews [1,2]).
A vast majority of research papers are focused on ran-
domly structuredCCLs produced by hot–pressing ionomer
ink with dissolved Pt/C particles onto a membrane.
Basic CCL design parameters are catalyst particles struc-
ture/composition, ionomer to carbon ratio and pore size
distribution [1,3,4]. These parameters need to be opti-
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mized to satisfy contradictory requirements: for exam-
ple, good oxygen transport requires lowering of ionomer
content to provide more open space for gaseous diffu-
sion, while better proton transport requires increasing the
ionomer content.
Increasing the performance of a low–Pt PEMFC is a

problem of tremendous importance for the technology.
Solution of this problem would help to reduce the cost of
PEMFC–based power sources. Any hints from the model-
ing side helping to improve performance of a low–Pt cell
are of interest for the fuel cell community.
Models of low–Pt catalyst layer performance have been

focused on oxygen transport though a single Pt/C agglom-
erate surrounded by a thin ionomer film [5–11]. The rate
of oxygen conversion in the agglomerate is calculated tak-
ing into account details of Pt/C particles and ionomer
film structure. This rate is then substituted into stan-
dard macro–homogeneous model for oxygen and proton
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transport through the CCL depth to calculate the CCL
polarization curve. In this way, parametric dependencies
of the cell polarization curve on agglomerate structure
have been studied. However, thesemodels describe oxygen
transport through the CCL only in a mean–field manner,
not specifying geometry of the void pores.
On experimental side, a novel technology of using scal-

able nanoporous carbon films with tunable pore size and
shape for CCL production has been reported [12]. Ultra-
thin carbon nanotube–based CCLs exhibiting excellent
performance and durability have been demonstrated [13];
however, these materials are not widely spread seemingly
due to their high cost. These works indicate interest of
research community in regularly structured catalyst layers.
In this paper, a transient model for electrochemical per-

formance of a conical nanopore is developed. Pores in the
CCL are surrounded by Pt/C agglomerates covered by a
thin ionomer film. To model this structure, conical pore is
separated from the coaxial Pt/C tube by an ionomer film. In
low–Pt PEMFCs, ionomer film provides a significant bar-
rier to oxygen transport at high currents [14]. The model,
thus, includes the main features of a low–Pt CCL: oxy-
gen transport along the void pore, oxygen dissolution in
the ionomer, proton transport in the ionomer, and ORR
at the ionomer/Pt interface. The model is extension of the
model for cylindrical pore performance and impedance
which helped to understand the effect of oxygen trans-
port through Nafion film on the low–Pt cell polarization
curve and spectra [15,16]. Here we show that the coni-
cal pore converging toward the membrane exhibits much
better performance as compared to cylindrical pore with
equivalent active surface area.
Similar problem of oxygen transport in a water–filled

conical nanopore has been considered in [17]. The authors
solved numerically a two–dimensional oxygen transport
equation in the nanopore. Here we demonstrate that the
problem can be reduced to one–dimensional one, which
greatly simplifies the numerical solution.
Further, linearization and Fourier–transform of the

transient mass and charge conservation equations give
linear equations for the perturbation amplitudes. A fast
method for numerical solution of the system of linear
ODEs is suggested; using this method, impedance of
conical and cylindrical pores are calculated and compared.

2 MODEL

The model is constructed under the following general
assumptions:

1. The cell is isothermal.

F IGURE 1 (a) Schematic of a conical pore formed by P/C
agglomerates covered by a thin ionomer film. (b) A model for the
conical pore performance and the system of coordinates.

2. The stoichiometry of air flow is large and the oxygen
concentration and current density are uniform over the
cell active area.

3. The oxygen transport in the gas–diffusion layer (GDL)
is ignored. This transport could be easily incorporated
by changing the boundary conditions for the oxygen
concentration and flux at the CCL/GDL interface.

4. The CCL flooding effects are not considered in this
work.

2.1 Equation for oxygen transport in a
conical pore

Schematic of a single conical pore is shown in Figure 1.
Oxygen is transported along the pore from theGDL toward
the membrane. Consider a small pore volume element of a
thickness 𝑑𝑥 (Figure 1b). The element has a form of conoid
with the small and large bases formed by the circles of the
radii 𝑅𝑝 and 𝑅′

𝑝 = 𝑅𝑝 + 𝑑𝑥 tan 𝛼, where 𝛼 is the conoid
half–angle (Figure 1b).
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The balance of oxygen fluxes in the volume element is

𝜋(𝑅𝑝 + 𝑑𝑥 tan 𝛼)2𝐷𝑜𝑥
𝜕𝑐

𝜕𝑥

||||𝑥+𝑑𝑥

− 𝜋𝑅2
𝑝𝐷𝑜𝑥

𝜕𝑐

𝜕𝑥

||||𝑥
= 𝜋(𝑅𝑝 + 𝑅𝑝 + 𝑑𝑥 tan 𝛼) 𝑑𝑥

𝑁𝑝

cos 𝛼
(1)

where 𝑐 is the oxygen concentration, 𝐷𝑜𝑥 is the oxygen
diffusion coefficient in a void pore space, and

𝑁𝑝 = −𝐷𝑁
𝜕𝑐𝑁
𝜕𝑟

||||𝑟=𝑅𝑝+

(2)

is the radial diffusive flux of oxygen dissolved in the
ionomer (see below).
Dividing both sides of Equation (1) by𝜋𝑅2

𝑝𝑑𝑥 and setting
𝑑𝑥 → 0, we come to

𝐷𝑜𝑥
𝜕2𝑐

𝜕𝑥2
+

2 tan(𝛼)

𝑅𝑝
𝐷𝑜𝑥

𝜕𝑐

𝜕𝑥
=

2𝑁𝑝

𝑅𝑝 cos 𝛼
(3)

It is convenient to introduce dimensionless variables

𝑥̃ =
𝑥

𝑙𝑡
, 𝑟 =

𝑟

𝑙𝑡
, 𝑡 =

𝑡𝑖∗
𝐶𝑑𝑙𝑏

𝑐 =
𝑐

𝑐𝑖𝑛
ℎ

, 𝑗̃ =
𝑗𝑙𝑡
𝜎𝑁𝑏

,

𝜂 =
𝜂

𝑏
, 𝐷̃𝑜𝑥 =

4𝐹𝐷𝑜𝑥𝑐
𝑖𝑛
ℎ

𝜎𝑁𝑏
, 𝑁̃𝑝 =

4𝐹𝑙𝑡𝑁𝑝

𝜎𝑁𝑏
,

𝑍̃ =
𝑍𝜎𝑁

𝑙𝑡
, 𝜔̃ =

𝜔𝐶𝑑𝑙𝑏

𝑖∗
(4)

where 𝑙𝑡 is the pore length, 𝑐𝑖𝑛
ℎ
is the reference (inlet)

oxygen concentration, 𝜎𝑁 is the ionomer film proton con-
ductivity, 𝑏 is the ORR Tafel slope, 𝑗 is the local proton
current density, 𝜂 is the cathode overpotential, positive by
convention,𝐶𝑑𝑙 is the double layer volumetric capacitance,
𝑖∗ is the ORR volumetric exchange current density, 𝑍 is the
impedance, and 𝜔 is the angular frequency (see below).
With the dimensionless variables, Equation (3) takes the

form

𝜀2𝐷̃𝑜𝑥

(
𝜕2𝑐

𝜕𝑥̃2
+

2 tan(𝛼)

𝑅̃𝑝(𝑥̃)

𝜕𝑐

𝜕𝑥̃

)
=

2𝜀2𝑁̃𝑝

𝑅̃𝑝(𝑥̃) cos 𝛼
(5)

where 𝜀 is the dimensionless Newman’s reaction penetra-
tion depth

𝜀 =

√
𝜎𝑁𝑏

𝑖∗𝑙
2
𝑡

(6)

𝑅̃𝑝(𝑥̃) = 𝑅̃𝑝,0 + 𝑥̃ tan(𝛼), (7)

and 𝑅̃𝑝,0 is the pore radius at the membrane surface (𝑥̃ =

0). Note that 𝛼 > 0 describes a divergent toward the GDL
pore shape, as in Figure 1, and 𝛼 < 0 corresponds to a
convergent shape.
It is important to note that any axially symmetric pore

of an arbitrary smooth shape can be approximated by a
set of conical rings of infinitesimal thickness. This means
that Equation (5) describes diffusive transport in a pore
with any curved side surface, provided that the pore radius
𝑅̃𝑝(𝑥̃) is given as a continuous function of 𝑥̃. The tan–
function of the pore surface generatrix slope is given by
tan(𝛼(𝑥̃)) = 𝜕𝑅̃𝑝∕𝜕𝑥̃.

2.2 Proton and oxygen transport in the
ionomer film

Protons move in the ionomer film along the coordinate 𝑥

(field direction). It is assumed that the Pt/C conoid has
openings through which protons can reach the ionomer
film/Pt interface from the outside of the Pt/C cone. Assum-
ing high electron conductivity of the porous layer, the
proton current conservation equation in the film is

𝜕𝑗

𝜕𝑥
= −𝑖∗

(
𝑐𝑁𝑚

𝑐𝑖𝑛
ℎ

)
exp

(𝜂

𝑏

)
(8)

where the right side is the Tafel rate of proton con-
sumption in the ORR. Here, 𝑐𝑁𝑚 is the dissolved oxygen
concentration at the Pt surface

𝑐𝑁𝑚 ≡ 𝑐𝑁(𝑅𝑚) (9)

where 𝑅𝑚 is the Pt cone radius (Figure 1):

𝑅𝑚(𝑥) = 𝑅𝑝(𝑥) + 𝑙𝑁∕ cos 𝛼, (10)

and 𝑙𝑁 is the ionomer film thickness. With the dimension-
less variables, Equation (8) takes the form

𝜀2
𝜕𝑗̃

𝜕𝑥̃
= −𝑐𝑁𝑚 exp 𝜂 (11)

According to theOhm’s law, 𝑗̃ = −𝜕𝜂∕𝜕𝑥̃ andEquation (11)
transforms to the diffusion–like equation for the ORR
overpotential

𝜀2
𝜕2𝜂

𝜕𝑥̃2
= 𝑐𝑁𝑚 exp 𝜂 (12)

Radial oxygen flux 𝑁𝑝 at the pore/ionomer interface is
determined from equation for radial transport of dissolved
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oxygen through the ionomer film:

𝐷𝑁

𝑟 cos2(𝛼)

𝜕

𝜕𝑟

(
𝑟
𝜕𝑐𝑁
𝜕𝑟

)
= 0, 𝑐𝑁(𝑅𝑝) = 𝐾𝐻𝑐(𝑥),

𝐷𝑁

cos(𝛼)

𝜕𝑐𝑁
𝜕𝑟

||||𝑟=𝑅𝑚

= −
𝑅2

𝑝𝑖∗

2𝑅𝑚(4𝐹)

(
𝑐𝑁(𝑅𝑚)

𝑐𝑖𝑛
ℎ

)
exp

(𝜂

𝑏

)
(13)

where 𝐾𝐻 is the dimensionless Henry’s constant for
oxygen dissolution in the ionomer. The first boundary con-
dition to Equation (13) describes dissolution of the gaseous
oxygen in the Nafion film according to the Henry’s law.
More complicated effects of oxygen transport through the
pore/film and film/metal interface are out of the present
model scope. The factors with cos 𝛼 arise as the oxygen dif-
fusion path (concentration gradient) is slantedwith respect
to the radial direction (Figure 1). The factor 𝑅2

𝑝∕(2𝑅𝑚) in
the right boundary condition for Equation (13) provides
correct transition of the model to the standard macro–
homogeneous model for oxygen and proton transport in
the limit of zero ionomer film thickness [15].
With the dimensionless variables, Equation (13) takes

the form

𝐷̃𝑁

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑐𝑁
𝜕𝑟

)
= 0, 𝑐𝑁(𝑅̃𝑝) = 𝐾𝐻𝑐(𝑥̃),

𝜀2𝛾𝑝𝐷̃𝑁
𝜕𝑐𝑁
𝜕𝑟

||||𝑟=𝑅̃𝑚

= −𝑐𝑁(𝑅̃𝑚)e𝜂 (14)

where

𝛾𝑝 =
2𝑅̃𝑚

𝑅̃2
𝑝 cos 𝛼

(15)

Solution to Equation (14) is

𝑐𝑁(𝑟) =

(
𝑅̃2

𝑝 ln (𝑅̃𝑚∕𝑟)e𝜂 + 𝛾𝑝𝜀
2𝐷̃𝑁

)
𝐾𝐻𝑐(

𝑅̃2
𝑝 ln

(
𝑅̃𝑚∕𝑅̃𝑝

)
e𝜂 + 𝛾𝑝𝜀2𝐷̃𝑁

) (16)

Setting here 𝑟 = 𝑅̃𝑚 we get 𝑐𝑁𝑚 appearing in Equation (12):

𝑐𝑁𝑚 =
𝐾𝐻𝑐

1 + 𝜉e𝜂
(17)

where

𝜉 =
𝑅̃2

𝑝 ln
(
𝑅̃𝑚∕𝑅̃𝑝

)
cos 𝛼

2𝜀2𝐷̃𝑁

. (18)

Differentiating (16) over 𝑟 and multiplying the result by
𝐷̃𝑁 we get the oxygen flux 𝑁̃𝑝 = −𝐷̃𝑁𝜕𝑐𝑁∕𝜕𝑟|𝑟=𝑅̃𝑝

on the

ionomer side of the pore/ionomer interface:

𝑁̃𝑝 =
𝑅̃𝑝 cos(𝛼)

2𝜀2
𝑐𝑁𝑚e𝜂. (19)

2.3 Static equations

Using Equation (19) and Equation (17) in Equation (5), we
get equation for the oxygen transport in a conoid pore with
reactive walls:

𝜀2𝐷̃𝑜𝑥

(
𝜕2𝑐

𝜕𝑥̃2
+

2 tan(𝛼)

𝑅̃𝑝

𝜕𝑐

𝜕𝑥̃

)
=

𝐾𝐻𝑐 e𝜂

1 + 𝜉e𝜂
(20)

Using Equation (17) in (12) we come to equation for the
overpotential

𝜀2
𝜕2𝜂

𝜕𝑥̃2
=

𝐾𝐻𝑐 e𝜂

1 + 𝜉e𝜂
(21)

The system of equations (20) and (21) describes the shapes
𝑐(𝑥̃) and 𝜂(𝑥̃) along the pore. The boundary conditions for
this system are quite obvious

𝜕𝑐

𝜕𝑥̃

||||𝑥̃=0

= 0, 𝑐(1) = 𝑐1,

𝜕𝜂

𝜕𝑥̃

||||𝑥̃=0

= −𝑗̃0,
𝜕𝜂

𝜕𝑥̃

||||𝑥̃=1

= 0 (22)

where 𝑐1 ic the oxygen concentration at the pore/GDL
interface, and 𝑗̃0 is the cell current density.

3 PORE IMPEDANCE

3.1 Transient transport equations

The transient versions of Equations (21) and (20) are

𝜕𝜂

𝜕𝑡
− 𝜀2

𝜕2𝜂

𝜕𝑥̃2
= −𝑐𝑁𝑚 e𝜂 (23)

𝜇2 𝜕𝑐

𝜕𝑡
− 𝜀2𝐷̃𝑜𝑥

(
𝜕2𝑐

𝜕𝑥̃2
+

2 tan(𝛼)

𝑅̃𝑝

𝜕𝑐

𝜕𝑥̃

)
= −

2𝜀2𝑁̃𝑝

𝑅̃𝑝 cos 𝛼
(24)

where 𝜇 is the constant parameter

𝜇 =

√
4𝐹𝑐𝑖𝑛

ℎ

𝐶𝑑𝑙𝑏
. (25)

The system of Equations (23) and (24) describes the tran-
sient shapes 𝜂(𝑡, 𝑥̃), 𝑐(𝑡, 𝑥̃) along the pore. The boundary
conditions for this system are given by Equations (22).
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Linearization and Fourier–transform of Equations (23)
and (24) lead to the linear equations for the small pertur-
bation amplitudes 𝜂1 and 𝑐1 in the 𝜔̃–space:

i𝜔̃𝜂1 − 𝜀2
𝜕2𝜂1

𝜕𝑥̃2
= −e𝜂0

𝑐1𝑁𝑚 − 𝑐0𝑁𝑚e𝜂0
𝜂1 (26)

i𝜔̃𝜇2𝑐1 − 𝜀2𝐷̃𝑜𝑥

(
𝜕2𝑐1

𝜕𝑥̃2
+

2 tan(𝛼)

𝑅̃𝑝

𝜕𝑐1

𝜕𝑥̃

)
= −

2𝜀2𝑁̃1
𝑝

𝑅̃𝑝 cos 𝛼
(27)

where

𝑁̃1
𝑝 = −𝐷̃𝑁

𝜕𝑐1𝑁
𝜕𝑟

|||||𝑟=𝑅̃𝑝

(28)

is the dissolved oxygen flux perturbation amplitude at the
pore/ionomer interface.
Parameter 𝑐0𝑁𝑚 is given by Equation (17), while 𝑐1𝑁𝑚 and

𝑁̃1
𝑝 result from the problem for dissolved oxygen transport

through the Nafion film. The latter is an obvious transient
extension of Equation (14):

𝜇2 𝜕𝑐𝑁

𝜕𝑡
−

𝜀2𝐷̃𝑁

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑐𝑁

𝜕𝑟

)
= 0,

𝑐𝑁(𝑅̃𝑝) = 𝐾𝐻𝑐(𝑥̃), 𝛾𝑝𝜀
2𝐷̃𝑁

𝜕𝑐𝑁

𝜕𝑟

|||𝑟=𝑅̃𝑚

= −𝑐Nme𝜂
(29)

Linearization and Fourier–transform of Equation (29) give
equation for the perturbation amplitude 𝑐1𝑁 :

i𝜔̃𝜇2𝑐1𝑁 −
𝜀2𝐷̃𝑁

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑐1

𝑁

𝜕𝑟

)
= 0,

𝑐1𝑁(𝑅̃𝑝) = 𝐾𝐻𝑐1(𝑥̃),

𝛾𝑝𝜀
2𝐷̃𝑁

𝜕𝑐1
𝑁

𝜕𝑟

||||𝑟=𝑅̃𝑚

= −e𝜂0
𝑐1Nm − 𝑐0Nme𝜂0

𝜂1

(30)

Solution to the linear Equation (30) allows us to calculate
parameters appearing in Equations (26) and (27):

𝑐1𝑁𝑚 =
𝐴𝑐

𝐵𝑐
𝑐1 +

𝐴𝜂

𝐵𝑐
𝜂1,

𝑁̃1
𝑝 = 𝐷̃𝑁

(
𝑄𝑐

𝐵𝑐
𝑐1 +

𝑄𝜂

𝐵𝑐
𝜂1

)
(31)

where the coefficients 𝐴𝑐, 𝐴𝜂, 𝐵𝑐, 𝑄𝑐, 𝑄𝜂 and 𝐵𝑁 are given
in Appendix.
Using Equations (31) in Equations (26) and (27), we

come to the system

𝜕2𝜂1

𝜕𝑥̃2
= 𝑝𝑐1 + 𝑞𝜂1, 𝜂1(1) = 𝜂1

1,
𝜕𝜂1

𝜕𝑥̃

|||||𝑥̃=1

= 0 (32)

𝜕2𝑐1

𝜕𝑥̃2
+ 𝑢

𝜕𝑐1

𝜕𝑥̃
= 𝑘𝑐1 + 𝑠𝜂1,

𝜕𝑐1

𝜕𝑥̃

|||||𝑥̃=0

= 0, 𝑐1(1) = 𝑐11

(33)

F IGURE 2 A uniform computational grid with𝑀 cells for
impedance calculations. Note that the cells [𝑎, 𝑏] are numbered
from the GDL to the membrane.

where the coefficient functions are given by

𝑝 =
e𝜂0

𝐴𝑐

𝜀2𝐵𝑐
, 𝑞 =

1

𝜀2

(
e𝜂0

𝐴𝜂

𝐵𝑐
+ 𝑐0𝑁𝑚e𝜂0

+ i𝜔̃

)
,

𝑘 =
2𝐷̃𝑁

𝐷̃𝑜𝑥𝑅̃𝑝 cos 𝛼

𝑄𝑐

𝐵𝑐
+

i𝜔̃𝜇2

𝜀2𝐷̃𝑜𝑥

,

𝑠 =
2𝐷̃𝑁

𝐷̃𝑜𝑥𝑅̃𝑝 cos 𝛼

𝑄𝜂

𝐵𝑐
, 𝑢 =

2 tan(𝛼)

𝑅̃𝑝

(34)

3.2 Numerical method

The system (32), (33) is a boundary–value problem with
variable coefficients. Analytical solution of the system is
hardly possible even in the case of 𝑥̃–independent coef-
ficients 𝑝, 𝑞, 𝑘, 𝑠, 𝑢. Numerical solution can be obtained
using the following idea.
We introduce a uniform computational grid on the

interval [0, 1] and formulate a Cauchy problem for Equa-
tions (32) and (33) on a single numerical cell 𝑥̃ ∈

[𝑎, 𝑏], with the following boundary conditions at 𝑥̃ = 𝑏

(Figure 2):

𝜂1(𝑏) = 𝜂1
𝑏
,

𝜕𝜂1

𝜕𝑥̃

|||||𝑥̃=𝑏

= −𝑗̃1
𝑏
,

𝑐1(𝑏) = 𝑐1
𝑏
,

𝜕𝑐1

𝜕𝑥̃

|||||𝑥̃=𝑏

= 𝑁̃1
𝑏

(35)

where the subscript 𝑏 indicates the values at 𝑥̃ = 𝑏.
Approximate solution of Equations (32), (33), and (35) in
the vicinity of 𝑥̃ = 𝑏 in the form of Taylor series is

𝜂1 ≃ 𝜂1
𝑏
+ 𝑗̃1

𝑏
(𝑏 − 𝑥̃) +

1

2

(
𝑝𝑐1

𝑏
− 𝑞𝜂1

𝑏

)
(𝑏 − 𝑥̃)2

−
1

6

(
𝑝𝑁̃1

𝑏
− 𝑞𝑗̃1

𝑏

)
(𝑏 − 𝑥̃)3 (36)
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𝑐1 ≃ 𝑐1
𝑏
− 𝑁̃1

𝑏
(𝑏 − 𝑥̃) +

1

2

(
𝑠𝜂1

𝑏
+ 𝑘𝑐1

𝑏
− 𝑢𝑁̃1

𝑏

)
(𝑏 − 𝑥̃)2

−
1

6

(
(𝑢2 + 𝑘)𝑁̃1

𝑏
− 𝑢

(
𝑠𝜂1

𝑏
+ 𝑘𝑐1

𝑏

)
− 𝑠𝑗̃1

𝑏

)
(𝑏 − 𝑥̃)3 (37)

where the four leading terms are kept.
Calculating the derivatives 𝑗̃1

𝑎 = −𝜕𝜂1∕𝜕𝑥̃|𝑥̃=𝑎, 𝑁̃1
𝑎 =

𝜕𝑐1∕𝜕𝑥̃|𝑥̃=𝑎 and setting 𝑥̃ = 𝑎 in Equations (36) and (37),
we get expressions of the unknown functions at 𝑥̃ = 𝑎

through their values at 𝑥̃ = 𝑏:

𝜂1
𝑎 = 𝜂1

𝑏
+ 𝑗̃1

𝑏
𝑙 +

𝑦1𝑙
2

2
+

𝑦2𝑙
3

6

𝑗̃1
𝑎 = 𝑗̃1

𝑏
+ 𝑦1𝑙 +

𝑦2𝑙
2

2

𝑐11 = 𝑐1
𝑏
− 𝑁̃1

𝑏
𝑙 +

𝑦3𝑙
2

2
+

𝑦4𝑙
3

6

𝑁̃1
𝑎 = 𝑁̃1

𝑏
− 𝑦3𝑙 −

𝑦4𝑙
2

2

(38)

where 𝑙 = 𝑏 − 𝑎 is the computational cell length, and

𝑦1 = 𝑝𝑐1
𝑏
+ 𝑞𝜂1

𝑏
, 𝑦2 = −𝑝𝑁̃1

𝑏
+ 𝑞𝑗̃1

𝑏
,

𝑦3 = 𝑘𝑐1
𝑏
+ 𝑠𝜂1

𝑏
− 𝑢𝑁̃1

𝑏
,

𝑦4 = −(𝑢2 + 𝑘)𝑁̃1
𝑏
+ 𝑢

(
𝑘𝑐1

𝑏
+ 𝑠𝜂1

𝑏

)
+ 𝑠𝑗̃1

𝑏
. (39)

The coefficient functions 𝑝, 𝑞, 𝑘, 𝑠, 𝑢 in Equations (39) are
calculated at the cell center 𝑥̃ = (𝑏 + 𝑎)∕2.
Equations (38) are the recurrent relations; to obtain the

unknown functions at all grid points, the values at 𝑥̃ = 1

have to be specified. For simplicity, we consider the case
of fast oxygen transport in the channel and GDL, meaning
that 𝑐11 = 0:

𝜂1
𝑏
= 𝜂1

1, 𝑐1
𝑏
= 0, 𝑗̃1

𝑏
= 0, 𝑁̃1

𝑏
= 𝑁̃1

1 (40)

Here, 𝜂1
1 is the applied potential perturbation and 𝑁̃1

1 is yet
undefined parameter. The parameter 𝑁̃1

1 , is a solution to
equation

𝑁̃1
0

(
𝑁̃1

1

)
= 0 (41)

meaning that the oxygen flux perturbation 𝑁̃1
0 at the

membrane must be zero. Solution of this equation is
discussed below.
With 𝑁̃1

1 at hand, we can iterate Equations (38)𝑀 times,
setting after each iteration

𝜂1
𝑏
= 𝜂1

𝑎, 𝑗̃1
𝑏
= 𝑗̃1

𝑎, 𝑐1
𝑏
= 𝑐1𝑎, 𝑁̃1

𝑏
= 𝑁̃1

𝑎, (42)

where𝑀 is the number of cells (Figure 2). This procedure
gives us solution at all the grid points. The values 𝜂1

0 and 𝑗̃1
0

TABLE 1 Pore/cell geometrical and operating parameters.

Pore length 𝑙𝑡 , cm 3 × 10−4 (3 𝜇m )
Mean pore radius, 𝑅𝑝 , nm 32.2
Pore angle 𝛼, rad (𝜋∕4) × 1.08 × 10−2

Nafion film thickness 𝑙𝑁 , cm 10−6 (10 nm)
ORR exchange current density, 𝑖∗, A cm−3 10−3

Henry’s constant for oxygen solubility
in water at 80◦C, mol/mol 6.76 × 10−3

ORR Tafel slope 𝑏 / V (per exponent) 0.03
Ionomer proton conductivity, 𝜎𝑁 / mS cm−1 1
Double layer capacitance 𝐶𝑑𝑙 / F cm−3 20
Cell current density 𝑗0 / A cm−2 0.5
Relative humidity 50%
Cathode absolute pressure, kPa 150
Cell temperature, K 273 + 80

at the membrane interface lead to the pore impedance

𝑍̃ =
𝜂1
0

𝑗̃1
0

. (43)

Numerical method based on Equation (38) is at least an
order of magnitude faster than the standard BVP solver
(see below).

4 RESULTS AND DISCUSSION

4.1 Static shapes

It is interesting to compare performance of conical and
cylindrical pores with the same side surface (electro-
chemically active) area. The pore length taken for the
calculations is 3 𝜇m, a typical thickness of low–Pt elec-
trodes with the Pt loading of about 0.1 mg cm−2. The other
parameters for the calculations are listed in Table 1.
The mean radius of the conical pore and the radius of

equivalent cylindrical pore were taken to be 32 nm, which
is the mean pore radius of a standard Pt/C electrode from
Gore [18]. The angle of conical pore is taken to provide the
pore radius at the GDL interface twice larger than the pore
radius at the membrane. This leads to a small angle of 𝛼 ≃

𝑅𝑝∕𝑙𝑡 ≃ 0.0107 rad, or 0.615 degrees, which allows us to set
cos(alpha) = 1. The other parameters are listed in Table 1.
Equations (20) and (21) have been solved using Python

boundary–value solver solve_bvp. The oxygen concentra-
tion and overpotential shapes in the conical and cylindrical
pores are compared in Figure 3. In the range of 0.2 ≤ 𝑥̃ ≤ 1,
the oxygen concentration shape in the conical pore is close
to linear indicating a more uniform rate of oxygen con-
sumption along the pore (Figure 3). The gain in the cell
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F IGURE 3 The shapes of oxygen concentration and ORR
overpotential 𝜂 along the conical and cylindrical pores. The cell
current density is 1.0 A cm−2.

potential is equal to the difference of overpotentials at 𝑥̃ =

0; this gain is about 50 mV (Figure 3). Note that the gain
increases with the growth of the pore angle 𝛼 (see below).

4.2 Impedance

Equation (41) has been solved using Python fsolve routine
and the same system of recurrent Equations (38) and (39).
Note that 𝑁̃1

1 is a complex–valued parameter and for using
fsolve, Equation (41) should be formulated as a system of
two equations, for the real and imaginary parts of 𝑁̃1

1 . A
good initial guess is {ℜ(𝑁̃1

1), ℑ(𝑁̃1
1)} = {𝜂1

1, 𝜂
1
1}.

The conical pore impedance for the parameters in
Table 1 calculated using Equations (38) on a grid with
𝑀 = 30 cells is shown in Figure 4. For comparison, the
same impedance calculated from the system of Equa-
tions (32), (33) using the standard Python BVP solver
solve_bvp is also shown. As can be seen, the results are
almost identical; however, in this case the method of
recurrent equations (38) is about 20 times faster than the
standard BVP solver.
Figure 5 shows the impedance spectrum of the equiv-

alent cylindrical pore for the same set of parameters
(Table 1). Comparison of the Nyquist spectra in Figures 5a
and 4a immediately shows superior performance of the
conical pore. It is interesting to note that the peak of−ℑ(𝑍)

of the conical pore impedance is shifted toward a higher
frequency as compared to this peak position of the cylin-
drical pore impedance (cf. Figures 5b and 4b). Distribution
of relaxation times (DRT) spectra show that the peaks of
the conical pore impedance exhibit quite significant shift
toward higher frequencies (to be published elsewhere).
The positive effect of pore conical shape on the perfor-

mance exists for anymean pore radius. Figure 6 shows that

F IGURE 4 (a) The Nyquist spectra of the conical pore
calculated with the recurrent Equations (38) on the grid with 30
cells (points) and from the direct numerical solution of
Equations (32), (33) using the standard Python BVP solver (open
circles). (b) The frequency dependencies of the real and imaginary
parts of the spectra in (a).

the potential loss (the ORR overpotential at the membrane
interface) decreases linearly with the growth of the pore
half–angle 𝛼.
At the present state of technology, it seems that making

the CCL with conical pores of the mean radius about sev-
eral tens of nanometers is hardly feasible. Ideally, it would
be great to produce a regular “grid” of nanopores con-
verging toward the membrane. To the best of the author’s
knowledge, conical pores could be designed using pore–
formers. However, this technique could produce pores
of a radius of about 0.1–1 𝜇m. One cannot make pores
with one to two orders of magnitude smaller radius in
this way. However, this work demonstrates possible direc-
tion for further development of highly efficient CCL for
low–Pt PEMFCs.

5 CONCLUSIONS

A model for transient electrochemical performance of a
conical pore in a low–Pt cathode catalyst layer is devel-
oped. An equation for diffusive oxygen transport along
the conical pore is derived. This equation is coupled
to the proton transport and dissolved oxygen transport
equations in a thin ionomer film separating open pore
from the coaxial Pt surface. Numerical solution of the
steady–state equations shows that already at a very small
conoid angle, the conoid nanopore performance quite
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F IGURE 5 (a) The Nyquist spectra of the cylindrical pore
calculated with the recurrent Equations (38) on the grid with 30
cells (points). (b) The frequency dependence of the real and
imaginary parts of the spectrum in (a).

F IGURE 6 Total potential loss vs the conoid half–angle for the
conical pore calculated with the data in Table 1 and the cell current
density of 1 A cm−2. The range of 𝛼 shown in this plot is equivalent
to 0 (cylindrical pore) to 1.13 × 10−2 rad.

significantly exceeds the performance of a cylindrical pore
with the equivalent active surface area. Further, equations
for small–amplitude AC perturbations of oxygen concen-
tration and overpotential in the pore are derived. A fast
method for solution of this system of linear ODEs is devel-
oped and used for calculation of the pore impedance.
Comparison with the cylindrical pore impedance shows
a shift of the conical pore spectrum features toward
higher frequencies.

NOMENCLATURE

̃ Marks dimensionless variables
𝑏 ORR Tafel slope, V

𝐶𝑑𝑙 Double layer volumetric capacitance, F cm−3

𝑐 Oxygen molar concentration in the pore, mol
cm−3

𝑐𝑁 Dissolved oxygen molar concentration in the
ionomer, mol cm−3

𝑐𝑖𝑛
ℎ

Reference (inlet) oxygen concentration, mol
cm−3

𝐷𝑜𝑥 Oxygen diffusion coefficient in the pore, cm2

s−1

𝐷𝑁 Oxygen diffusion coefficient in the ionomer,
cm2 s−1

𝐸 Dimensionless parameter, Equation (A6)
𝐹 Faraday constant, C mol−1

𝐽0, 𝐽1 Bessel functions of the first kind
𝑖∗ ORR volumetric exchange current density, A

cm−3

i Imaginary unit
𝐽 Mean current density in the cell, A cm−2

𝑗 Local proton current density in the film, A
cm−2

𝐾𝐻 Dimensionless Henry’s constant for oxygen
dissolution in the ionomer, mol/mol

𝐾0, 𝐾1 Modified Bessel functions of the second kind
𝑙 Length of the computational cell, 𝑙 = 𝑏 − 𝑎

𝑙𝑡 Pore length, cm
𝑀 Number of computational cells
𝑁𝑝 Oxygen diffusive flux at the pore/ionomer

interface, mol cm−2 s−1

𝑝, 𝑞, 𝑘, 𝑠, 𝑢 Coefficients in equations, Equation (34)
𝑅𝑝 Pore radius, cm
𝑅𝑚 Pt/C radius, cm

𝑟 Radial coordinate, cm
𝑡 Time, s
𝑥 Coordinate along the pore, cm
𝑍 Impedance Ω cm2

Subscripts
0 Membrane/pore interface
1 Pore/GDL interface

𝑎, 𝑏 𝑥̃–coordinates of a computational cell
𝑁 Ionomer film

Superscripts
0 Steady–state value
1 Small–amplitude perturbation
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Greek
𝛼 Cone half–angle, rad

𝛾𝑝 Dimensionless parameter, Equation (15)
𝜂 ORR overpotential, positive by convention, V
𝜀 Dimensionless parameter, Equation (6)
𝜇 Dimensionless parameter, Equation (25)

𝜎𝑁 Ionomer film proton conductivity, S cm−1

𝜉 Dimensionless parameter, Equation (18)
𝜙, 𝜓 Dimensionless parameters, Equation (A6)

𝜔 Angular frequency of the AC signal, s−1
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APPENDIX: COEFFICIENTS IN EQUATIONS (31),
(34)

𝐴𝑐 = (i𝐾1(−i𝜙𝑅̃𝑚) 𝐽0 (𝜙𝑅̃𝑚) + 𝐾0 (−i𝜙𝑅̃𝑚) 𝐽1(𝜙𝑅̃𝑚)) 𝜙𝐾𝐻

(A1)

𝐴𝜂 =
(
𝐽0(𝜙𝑅̃𝑚)𝐾0

(
−i𝜙𝑅̃𝑝

)
− 𝐽0

(
𝜙𝑅̃𝑝

)
𝐾0(−i𝜙𝑅̃𝑚)

)
𝐸𝑐0Nm

(A2)

𝐵𝑐 =
(
i𝐾1(−i𝜙𝑅̃𝑚) 𝐽0

(
𝜙𝑅̃𝑝

)
+ 𝐾0

(
−i𝜙𝑅̃𝑝

)
𝐽1(𝜙𝑅̃𝑚)

)
𝜙

+
(
𝐽0
(
𝜙𝑅̃𝑝

)
𝐾0(−i𝜙𝑅̃𝑚) − 𝐽0(𝜙𝑅̃𝑚)𝐾0

(
−i𝜙𝑅̃𝑝

))
𝐸

(A3)

𝑄𝑐 = 𝐾𝐻

(
𝐽1
(
𝜙𝑅̃𝑝

)
𝐾1(−i𝜙𝑅̃𝑚) − 𝐽1(𝜙𝑅̃𝑚)𝐾1

(
−i𝜙𝑅̃𝑝

))
𝜓

+𝐾𝐻

(
i𝐽0(𝜙𝑅̃𝑚)𝐾1

(
−i𝜙𝑅̃𝑝

)
+ 𝐽1

(
𝜙𝑅̃𝑝

)
𝐾0(−i𝜙𝑅̃𝑚)

)
𝐸𝜙

(A4)

𝑄𝜂 =
(
i𝐽0

(
𝜙𝑅̃𝑝

)
𝐾1

(
−i𝜙𝑅̃𝑝

)
+ 𝐾0

(
−i𝜙𝑅̃𝑝

)
𝐽1

(
𝜙𝑅̃𝑝

))
𝜙𝐸𝑐0

Nm

(A5)

where 𝐽0, 𝐽1 are the Bessel functions of the first kind and
𝐾0, 𝐾1 are the modified Bessel functions of the second
kind. Further,

𝐸 =
e𝜂

0

𝛾𝑝𝜀2𝐷̃𝑁
, 𝜓 =

𝜔̃𝜇2

𝜀2𝐷̃𝑁
, 𝛾𝑝 =

2𝑅̃𝑚

𝑅̃2
𝑝 cos 𝛼

,

𝜙 =
√

−i𝜓,
(A6)

and

𝑐0𝑁𝑚 =
𝐾𝐻𝑐0

1 + 𝜉e𝜂0
, 𝜉 =

𝑅̃2
𝑝 ln

(
𝑅̃𝑚∕𝑅̃𝑝

)
cos 𝛼

2𝜀2𝐷̃𝑁

. (A7)
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