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1 | INTRODUCTION

Cathode catalyst layer (CCL) is a key component of poly-
mer electrolyte fuel cells. In this layer, oxygen meets
protons and electrons to convert the charged species into
water. To maximize catalyst surface area for the oxygen
reduction reaction (ORR), the CCL is designed as a porous
media comprising of three interpenetrating clusters of Pt/C
particles, ionomer for proton transport and void pores for
oxygen transport.

Understanding and engineering optimal CCL is a key
problem in PEMFC technology (see recent reviews [-2]).
A vast majority of research papers are focused on ran-
domly structured CCLs produced by hot-pressing ionomer
ink with dissolved Pt/C particles onto a membrane.
Basic CCL design parameters are catalyst particles struc-
ture/composition, ionomer to carbon ratio and pore size
distribution [3#l. These parameters need to be opti-

A model for the transient electrochemical performance of a conical pore in the
cathode catalyst layer of a low—Pt PEM fuel cell is developed. The pore is sep-
arated from the Pt surface by a thin ionomer film. A transient equation for the
oxygen diffusion along the pore coupled to the proton conservation equation in
the ionomer film is derived. Numerical solution of the static equations shows
superior electrochemical performance of a conical pore as compared to cylin-
drical pore with equivalent electrochemically active surface area. Equations for
the pore impedance are derived by linearization and Fourier-transform of tran-
sient equations. The conical pore impedance is calculated and compared to the
impedance of equivalent cylindrical pore. It is shown that the pore shape affects
the frequency dependence of impedance.

impedance, low Pt loading, modeling, PEM fuel cell

mized to satisfy contradictory requirements: for exam-
ple, good oxygen transport requires lowering of ionomer
content to provide more open space for gaseous diffu-
sion, while better proton transport requires increasing the
ionomer content.

Increasing the performance of a low-Pt PEMFC is a
problem of tremendous importance for the technology.
Solution of this problem would help to reduce the cost of
PEMFC-based power sources. Any hints from the model-
ing side helping to improve performance of a low-Pt cell
are of interest for the fuel cell community.

Models of low-Pt catalyst layer performance have been
focused on oxygen transport though a single Pt/C agglom-
erate surrounded by a thin ionomer film [5'!], The rate
of oxygen conversion in the agglomerate is calculated tak-
ing into account details of Pt/C particles and ionomer
film structure. This rate is then substituted into stan-
dard macro-homogeneous model for oxygen and proton
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transport through the CCL depth to calculate the CCL
polarization curve. In this way, parametric dependencies
of the cell polarization curve on agglomerate structure
have been studied. However, these models describe oxygen
transport through the CCL only in a mean-field manner,
not specifying geometry of the void pores.

On experimental side, a novel technology of using scal-
able nanoporous carbon films with tunable pore size and
shape for CCL production has been reported 2], Ultra-
thin carbon nanotube-based CCLs exhibiting excellent
performance and durability have been demonstrated [*];
however, these materials are not widely spread seemingly
due to their high cost. These works indicate interest of
research community in regularly structured catalyst layers.

In this paper, a transient model for electrochemical per-
formance of a conical nanopore is developed. Pores in the
CCL are surrounded by Pt/C agglomerates covered by a
thin ionomer film. To model this structure, conical pore is
separated from the coaxial Pt/C tube by an ionomer film. In
low-Pt PEMFCs, ionomer film provides a significant bar-
rier to oxygen transport at high currents (1] The model,
thus, includes the main features of a low-Pt CCL: oxy-
gen transport along the void pore, oxygen dissolution in
the ionomer, proton transport in the ionomer, and ORR
at the ionomer/Pt interface. The model is extension of the
model for cylindrical pore performance and impedance
which helped to understand the effect of oxygen trans-
port through Nafion film on the low-Pt cell polarization
curve and spectra '>1%], Here we show that the coni-
cal pore converging toward the membrane exhibits much
better performance as compared to cylindrical pore with
equivalent active surface area.

Similar problem of oxygen transport in a water—filled
conical nanopore has been considered in ['7]. The authors
solved numerically a two-dimensional oxygen transport
equation in the nanopore. Here we demonstrate that the
problem can be reduced to one-dimensional one, which
greatly simplifies the numerical solution.

Further, linearization and Fourier-transform of the
transient mass and charge conservation equations give
linear equations for the perturbation amplitudes. A fast
method for numerical solution of the system of linear
ODEs is suggested; using this method, impedance of
conical and cylindrical pores are calculated and compared.

2 | MODEL

The model is constructed under the following general
assumptions:

1. The cell is isothermal.
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FIGURE 1
agglomerates covered by a thin ionomer film. (b) A model for the

(a) Schematic of a conical pore formed by P/C

conical pore performance and the system of coordinates.

2. The stoichiometry of air flow is large and the oxygen
concentration and current density are uniform over the
cell active area.

3. The oxygen transport in the gas—diffusion layer (GDL)
is ignored. This transport could be easily incorporated
by changing the boundary conditions for the oxygen
concentration and flux at the CCL/GDL interface.

4. The CCL flooding effects are not considered in this
work.

2.1 | Equation for oxygen transport in a
conical pore

Schematic of a single conical pore is shown in Figure 1.
Oxygen is transported along the pore from the GDL toward
the membrane. Consider a small pore volume element of a
thickness dx (Figure 1b). The element has a form of conoid
with the small and large bases formed by the circles of the
radii R, and R;, =R, + dxtana, where « is the conoid
half-angle (Figure 1b).
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The balance of oxygen fluxes in the volume element is

dc dc
2 2
(R, +dxtana)“D,, 3% |y — 7R, Doy 3%,
R R d dx—= @
=7n(R, + R, + dxtana) X (¢))

where c is the oxygen concentration, D,, is the oxygen
diffusion coefficient in a void pore space, and

N, =—-Dy—— 2
D Nar r:RP+ ()

is the radial diffusive flux of oxygen dissolved in the
ionomer (see below).

Dividing both sides of Equation (1) by an,dx and setting
dx — 0, we come to

9%c 2tan(a)

e 2Np
E + Rp D (3)

D, LA — .
ox %9x  Rpcosa

It is convenient to introduce dimensionless variables

g=X ol oo th s 5
T TR Teap T T ow
3 4FD,,.ci" AFI,N
ﬁ:g’ Dox=#, Np= tp,
b O'Nb O'Nb
. Zo wCyb
7="N 5=—"29 (@

I ° i,
where [, is the pore length, c;'l” is the reference (inlet)
oxygen concentration, oy is the ionomer film proton con-
ductivity, b is the ORR Tafel slope, j is the local proton
current density,  is the cathode overpotential, positive by
convention, Cy; is the double layer volumetric capacitance,
i, is the ORR volumetric exchange current density, Z is the
impedance, and w is the angular frequency (see below).

With the dimensionless variables, Equation (3) takes the
form
N il S
%2 R,(x) ox R, (%)cosa

where ¢ is the dimensionless Newman’s reaction penetra-
tion depth

e= |20 ©)

-2
il

R, (%) =R, + X tan(a), (7

and R p,o is the pore radius at the membrane surface (X =
0). Note that a > 0 describes a divergent toward the GDL
pore shape, as in Figure 1, and a < 0 corresponds to a
convergent shape.

It is important to note that any axially symmetric pore
of an arbitrary smooth shape can be approximated by a
set of conical rings of infinitesimal thickness. This means
that Equation (5) describes diffusive transport in a pore
with any curved side surface, provided that the pore radius
Rp(fc) is given as a continuous function of %. The tan-
function of the pore surface generatrix slope is given by
tan(a(X)) = dR, /9X.

2.2 | Proton and oxygen transport in the
ionomer film

Protons move in the ionomer film along the coordinate x
(field direction). It is assumed that the Pt/C conoid has
openings through which protons can reach the ionomer
film/Pt interface from the outside of the Pt/C cone. Assum-
ing high electron conductivity of the porous layer, the
proton current conservation equation in the film is

a.] . CNm n
ax ‘l*<7)exp<5> ®

h

where the right side is the Tafel rate of proton con-
sumption in the ORR. Here, cy,, is the dissolved oxygen
concentration at the Pt surface

CNm = CN(Rm) (9)
where R, is the Pt cone radius (Figure 1):
Ry (x) = Ry(x) + Iy / cosa, (10)

and Iy is the ionomer film thickness. With the dimension-
less variables, Equation (8) takes the form

oj _
e 52 = ~Cumexpi) ()

According to the Ohm’s law, j = —d77/3% and Equation (11)
transforms to the diffusion-like equation for the ORR
overpotential

i/ _
32@ =CNm €Xp7) (12)

Radial oxygen flux N, at the pore/ionomer interface is
determined from equation for radial transport of dissolved
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oxygen through the ionomer film: ionomer side of the pore/ionomer interface:

R, cos(a) _
. p ~
DN 0 aCN p= ) cNmen' (19)
—— —“(r=2)=0o, R)=K , 2
rCOSZ(C() ar <r ar ) CN( p) Hc(x)

DN aCN
cos(at) Or

) @

R2i, R
- _ 14 CN(. m) exp(
r=R,, 2Rm(4F) c;l”

where Ky is the dimensionless Henry’s constant for
oxygen dissolution in the ionomer. The first boundary con-
dition to Equation (13) describes dissolution of the gaseous
oxygen in the Nafion film according to the Henry’s law.
More complicated effects of oxygen transport through the
pore/film and film/metal interface are out of the present
model scope. The factors with cos a arise as the oxygen dif-
fusion path (concentration gradient) is slanted with respect
to the radial direction (Figure 1). The factor RIZ, /(2R,,) in
the right boundary condition for Equation (13) provides
correct transition of the model to the standard macro-
homogeneous model for oxygen and proton transport in
the limit of zero ionomer film thickness ["°].

With the dimensionless variables, Equation (13) takes
the form

~N 0 [.0¢ _
_a_(a_> -

o3

en(Rp) = Kp(%),

. 0¢ o
ErpDy5r| = —tnRu)e? (14)
F=Rp,
where
2R,
=— (15)
Tp R} cosa
Solution to Equation (14) is
(R In(R,,/P)e" + ype*Dy )Kyc
en(F) = (16)
(RjIn (R, /Rp)e7 +ype?Dy )

Setting here 7 = R,,, we get éy,,, appearing in Equation (12):

K€
C = - 17
CNm 1+§e7] ( )
where
R?In (R,,/R,) cosa
 _ Bn (R /Ry cosct )

2EZDN

Differentiating (16) over # and multiplying the result by
Dy we get the oxygen flux N, = —DNdéN/aflfzgp on the

2.3 | Static equations

Using Equation (19) and Equation (17) in Equation (5), we
get equation for the oxygen transport in a conoid pore with
reactive walls:

,~ (0%  2tan(a) ¢\ _ Kpycel
EDox\ 3zt —F5 33 | = -
0%2 R, Ox 1+ &e?

(20)

Using Equation (17) in (12) we come to equation for the
overpotential
,0%) _ Kycel

g4 ——

a2 1+ @D

The system of equations (20) and (21) describes the shapes
¢(%) and 7(%) along the pore. The boundary conditions for
this system are quite obvious

aé

— =0, ¢éQ1)=

a~ o ) C( ) cl,
o5 . o7
b =G, 2| =0 (2
ax im0 .]O’ a).(.: o 0 ( )

where ¢; ic the oxygen concentration at the pore/GDL
interface, and J, is the cell current density.

3 | PORE IMPEDANCE

3.1 | Transient transport equations

The transient versions of Equations (21) and (20) are

o1 8%7 o
ﬁ - 52@ = —Cnm e’ (23)
a¢ . (8% 2tan(a) 3¢ 2¢°N,
Ko~ ¢ °x<6)22 R, ox R, cosa 24
where u is the constant parameter
4Fc;l”

The system of Equations (23) and (24) describes the tran-
sient shapes 7(f, X), é(f, %) along the pore. The boundary
conditions for this system are given by Equations (22).
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Linearization and Fourier-transform of Equations (23)
and (24) lead to the linear equations for the small pertur-
bation amplitudes 77* and ¢! in the &-space:

62 =1

o n 70 70
iont — Ezﬁ =—ele, —a& el (26)
o ax (0% 2tan(a)dc' 252]\7}1
iou“c —eDoy\ =+ ——=2 ) =—5—
0x2 R, ox R,cosa
(27)
where
V1 D _551 28
p— YN oF o ( )
F=R

is the dissolved oxygen flux perturbation amplitude at the
pore/ionomer interface.

Parameter ¢, is given by Equation (17), while ¢}, and
]\711, result from the problem for dissolved oxygen transport
through the Nafion film. The latter is an obvious transient
extension of Equation (14):

3¢ 2Dy 8 [ .0¢
2—N——N—<r—"’)=0,

ot Foor or
se (29)
~ A5 ~f o~ ~ C, ~ 1
en(Rp) = Kyé(%), yps2DN—a:’ e = —Cyme”

Linearization and Fourier-transform of Equation (29) give
equation for the perturbation amplitude 6}\]:

27 =1
o~ 2] e“Dy a ~aCN
idusé,, ———=(7F=L2 ) =0,
KN F af< or
15 \ _ 1/
CN(Rp) = Ky (%), (30)
e2D,, 2N =—el'el — & el'pl
YpEUNTI = Nm = CNm®" 7]
r=

m

Solution to the linear Equation (30) allows us to calculate
parameters appearing in Equations (26) and (27):

A A
~1 C ~1 N <1
Gy, = —C +—=—17,
Nm Bc BC 7
. ~ (Qc,  Qn_
I'=D (—Ccl +—=7) (3
PN B T OB,
where the coefficients A, Ay, Be, Qc, Qy and By are given
in Appendix.
Using Equations (31) in Equations (26) and (27), we
come to the system

2,51 ~1
o a R D R/ _

T R 1) =7, 3% . =0 (32)
3%¢! dé! PR 1o I O
_6)22+u_55c_kc + 57, ﬁx_ =0, ¢c()=¢

(33)

Cathode catalyst layer

: 7°(2) A
g e 5
= P
El e
IS

M a b 1

N S S ST SRV S
0 1 %

FIGURE 2 A uniform computational grid with M cells for
impedance calculations. Note that the cells [a, b] are numbered
from the GDL to the membrane.

where the coefficient functions are given by

0 50
e’ A, 1(e” Ay 0 0
= = — 7 19)
p 2B, ’ q €2< B, +Cy e +Hid |,

2Dy Q. + iou®

k=—— - —,
DyxRpcosa B. 2D,
2D Q 2 tan(a
=N, 2Ry
DRy, cosa B R,

3.2 | Numerical method

The system (32), (33) is a boundary-value problem with
variable coefficients. Analytical solution of the system is
hardly possible even in the case of X-independent coef-
ficients p,q, k,s,u. Numerical solution can be obtained
using the following idea.

We introduce a uniform computational grid on the
interval [0, 1] and formulate a Cauchy problem for Equa-
tions (32) and (33) on a single numerical cell X €
[a, b], with the following boundary conditions at X = b
(Figure 2):

ot .
51 _ 5l <1
77 (b) - 77b’ E - _‘]b’

X=

(35)

N a o -
Cl(b) = C;, a__)?j = N;

X=b

where the subscript b indicates the values at X =b.
Approximate solution of Equations (32), (33), and (35) in
the vicinity of X = b in the form of Taylor series is

7' =1, + Jy(b = %) + 5 (p — @y ) (b — %)°

~ (PN} - i) b -2 (36)
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A Al K N . 5 -
cl:cl—Né(b—x)+E(sné+kcé—uN;)(b—x)2
— (@2 + N} — (s + keb) = sJL)(b -2 (37)

where the four leading terms are kept.

Calculating the derivatives j. = —0%'/0%|z—y, N =
0¢'/0%|z—, and setting X = a in Equations (36) and (37),
we get expressions of the unknown functions at X = a
through their values at ¥ = b:

72 73
~1 _ ~1 ~17 yll yZI
na_nb+.]bl+T+T
: yol
Ja=Ty i+ ==
38
~1 ~1 17 y3~2 y4l~3 ( )
¢ = b_Nbl+T+T
~ ~ ~ y4T2
Ni=N} -yl 2

where [ = b — a is the computational cell length, and

yi =p& +qi, y,=-pN}+4qj,
ys3 = k¢, + 577, —uN},
ya=—? + kN, +u(ke, +s7,) +sj,. (39)

The coefficient functions p, q, k, s, u in Equations (39) are
calculated at the cell center X = (b + a)/2.

Equations (38) are the recurrent relations; to obtain the
unknown functions at all grid points, the values at X = 1
have to be specified. For simplicity, we consider the case
of fast oxygen transport in the channel and GDL, meaning
that ¢} = 0:

Ay =1, € =0 Jj =0, N,=N  (40)
Here, ﬁ% is the applied potential perturbation and N 11 isyet
undefined parameter. The parameter N, is a solution to

equation
Ny (N]) =0 (41)

meaning that the oxygen flux perturbation 1\73 at the
membrane must be zero. Solution of this equation is
discussed below.

With N 11 at hand, we can iterate Equations (38) M times,
setting after each iteration

T =Y Jp=Jo G =C Ny=Ng (42
where M is the number of cells (Figure 2). This procedure

gives us solution at all the grid points. The values 7, and j,

TABLE 1

Pore length [;, cm

Pore/cell geometrical and operating parameters.

3x107* (3 um)

Mean pore radius, R,,, nm 322

Pore angle a, rad (/4) x 1.08 X 1072
Nafion film thickness Iy, cm 107° (10 nm)
ORR exchange current density, i,, Acm™ 1073

Henry’s constant for oxygen solubility

in water at 80°C, mol/mol 6.76 X 1073
ORR Tafel slope b / V (per exponent) 0.03
Ionomer proton conductivity, oy / mS cm™ 1

Double layer capacitance Cy; / F cm™ 20

Cell current density j, / A cm™2 0.5

Relative humidity 50%

Cathode absolute pressure, kPa 150

Cell temperature, K 273 + 80

at the membrane interface lead to the pore impedance

Z7=20
Jo

(43)
Numerical method based on Equation (38) is at least an

order of magnitude faster than the standard BVP solver
(see below).

4 | RESULTS AND DISCUSSION

4.1 | Static shapes

It is interesting to compare performance of conical and
cylindrical pores with the same side surface (electro-
chemically active) area. The pore length taken for the
calculations is 3 um, a typical thickness of low-Pt elec-
trodes with the Pt loading of about 0.1 mg cm~2. The other
parameters for the calculations are listed in Table 1.

The mean radius of the conical pore and the radius of
equivalent cylindrical pore were taken to be 32 nm, which
is the mean pore radius of a standard Pt/C electrode from
Gore ['8]. The angle of conical pore is taken to provide the
pore radius at the GDL interface twice larger than the pore
radius at the membrane. This leads to a small angle of o ~
R,/l; ~0.0107 rad, or 0.615 degrees, which allows us to set
cos(alpha) = 1. The other parameters are listed in Table 1.

Equations (20) and (21) have been solved using Python
boundary-value solver solve_bvp. The oxygen concentra-
tion and overpotential shapes in the conical and cylindrical
pores are compared in Figure 3. In the range of 0.2 < ¥ < 1,
the oxygen concentration shape in the conical pore is close
to linear indicating a more uniform rate of oxygen con-
sumption along the pore (Figure 3). The gain in the cell
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FIGURE 3 The shapes of oxygen concentration and ORR
overpotential 7 along the conical and cylindrical pores. The cell

current density is 1.0 A cm™2.

potential is equal to the difference of overpotentials at X =
0; this gain is about 50 mV (Figure 3). Note that the gain
increases with the growth of the pore angle a (see below).

4.2 | Impedance

Equation (41) has been solved using Python fsolve routine
and the same system of recurrent Equations (38) and (39).
Note that N } is a complex—valued parameter and for using
fSolve, Equation (41) should be formulated as a system of
two equations, for the real and imaginary parts of N } A
good initial guess is {R(N]), S(N])} = {71, 7, }.

The conical pore impedance for the parameters in
Table 1 calculated using Equations (38) on a grid with
M =30 cells is shown in Figure 4. For comparison, the
same impedance calculated from the system of Equa-
tions (32), (33) using the standard Python BVP solver
solve_bvp is also shown. As can be seen, the results are
almost identical; however, in this case the method of
recurrent equations (38) is about 20 times faster than the
standard BVP solver.

Figure 5 shows the impedance spectrum of the equiv-
alent cylindrical pore for the same set of parameters
(Table 1). Comparison of the Nyquist spectra in Figures 5a
and 4a immediately shows superior performance of the
conical pore. Itis interesting to note that the peak of —3(Z)
of the conical pore impedance is shifted toward a higher
frequency as compared to this peak position of the cylin-
drical pore impedance (cf. Figures 5b and 4b). Distribution
of relaxation times (DRT) spectra show that the peaks of
the conical pore impedance exhibit quite significant shift
toward higher frequencies (to be published elsewhere).

The positive effect of pore conical shape on the perfor-
mance exists for any mean pore radius. Figure 6 shows that

10° 10! 102 10° 10* 10°
frequency / Hz

FIGURE 4 (a)The Nyquist spectra of the conical pore
calculated with the recurrent Equations (38) on the grid with 30
cells (points) and from the direct numerical solution of

Equations (32), (33) using the standard Python BVP solver (open
circles). (b) The frequency dependencies of the real and imaginary
parts of the spectra in (a).

the potential loss (the ORR overpotential at the membrane
interface) decreases linearly with the growth of the pore
half-angle a.

At the present state of technology, it seems that making
the CCL with conical pores of the mean radius about sev-
eral tens of nanometers is hardly feasible. Ideally, it would
be great to produce a regular “grid” of nanopores con-
verging toward the membrane. To the best of the author’s
knowledge, conical pores could be designed using pore—
formers. However, this technique could produce pores
of a radius of about 0.1-1 um. One cannot make pores
with one to two orders of magnitude smaller radius in
this way. However, this work demonstrates possible direc-
tion for further development of highly efficient CCL for
low-Pt PEMFCs.

5 | CONCLUSIONS

A model for transient electrochemical performance of a
conical pore in a low-Pt cathode catalyst layer is devel-
oped. An equation for diffusive oxygen transport along
the conical pore is derived. This equation is coupled
to the proton transport and dissolved oxygen transport
equations in a thin ionomer film separating open pore
from the coaxial Pt surface. Numerical solution of the
steady-state equations shows that already at a very small
conoid angle, the conoid nanopore performance quite
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0.06 NOMENCLATURE

Cylindrical pore L. . @

.. . Marks dimensionless variables
5 0.02 b ORR Tafel slope, V
; Cy  Double layer volumetric capacitance, F cm™

¢ Oxygen molar concentration in the pore, mol
3

: 3
recurrent ‘

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

Re(Z) / Ohm cm? cm
cy Dissolved oxygen molar concentration in the
0.15 M=k k14Rreed-4:Hi1 b) ' ionomer, mol cm—3
€ c;l” Reference (inlet) oxygen concentration, mol
£ 010 emc :
S I i} D, O_)iygen diffusion coefficient in the pore, cm
N 0.05 it HH—FHHH gt s
=R 1 R A S R Dy Oxygen diffusion coefficient in the ionomer,
' s i R Al cm? s
0.00 16'0 ....... 101 102 103 10 105 E Dimensionless paramete_r, Equation (A6)
frequency / Hz F  Faraday constant, C mol™
Jo,J1 Bessel functions of the first kind
FIGURE 5 (a) The Nyquist spectra of the cylindrical pore i, ORR volumetric exchange current density, A
calculated with the recurrent Equations (38) on the grid with 30 cm™3
cells (points). (b) The frequency dependence of the real and i Imaginary unit
imaginary parts of the spectrum in (a). J Mean current density in the cell, A cm™>
j Local proton current density in the film, A
cm™2
0.72 Ky Dimensionless Henry’s constant for oxygen
dissolution in the ionomer, mol/mol
070 -, Ky, K; Modified Bessel functions of the sefcond kind
z "‘ I Length of the computational cell, [ = b —a
2 e I, Pore length, cm
_E 0.68 '-. M Number of computational cells
5 e N, Oxygen diffusive flux at the pore/ionomer
S . '. interface, mol cm=2 s~}

D,q,k,s,u Coefficients in equations, Equation (34)
R, Pore radius, cm
0-64 9.0 0.2 0.4 0.6 0.8 1.0 R,, Pt/Cradius, cm

m
Conical half--angle / rad / (Rp//t) r Radial Coordinate, cm
t Time,s
FIGURE 6 Total potential loss vs the conoid half-angle for the x Coordinate along the pore, cm
conical pore calculated with the data in Table 1 and the cell current VA Impedance Q cm?
density of 1 A cm™2. The range of a shown in this plot is equivalent
to 0 (cylindrical pore) to 1.13 x 1072 rad.
Subscripts

L o 0 Membrane/pore interface

significantly exceeds the performance of a cylindrical pore / P
- . . . 1 Pore/GDL interface

with the equivalent active surface area. Further, equations . i .
£ 1 litude AC perturbati ¢ a,b X-coordinates of a computational cell

or small-amplitude perturbations of oxygen concen- N Ionomer film

tration and overpotential in the pore are derived. A fast
method for solution of this system of linear ODEs is devel-
oped and used for calculation of the pore impedance. Superscripts
Comparison with the cylindrical pore impedance shows

a shift of the conical pore spectrum features toward O Steady-state value
higher frequencies. 1 Small-amplitude perturbation
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a Cone half-angle, rad
yp Dimensionless parameter, Equation (15)
7 ORR overpotential, positive by convention, V
¢ Dimensionless parameter, Equation (6)
u  Dimensionless parameter, Equation (25)
oy Ionomer film proton conductivity, S cm™
¢ Dimensionless parameter, Equation (18)
¢,9 Dimensionless parameters, Equation (A6)
@ Angular frequency of the AC signal, s~
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APPENDIX: COEFFICIENTS IN EQUATIONS (31),
(34)

Ac = (K1 (=i¢Rn) Jo ($Rn) + Ko (=ipR1n) J1($R 1)) K
(A1)

Ay = (]0(¢Em)KO(_i¢'Ep> - JO(¢'Ep> KO(_iqum)) EEI.i]m

(A2)

B, = (iK:(=i¢Rpn) Jo (¢Rp) + Ko(~i¢Ry) J1($R,)) ¢
+ (Jo(#R,) Ko(=i¢Rn) = Jo($Rm) Ko(~i¢R,) ) E
(A3)

Q. =Ky (Jl (¢Rp) Kl(_i¢Rm) - J1(¢Rm)K1 (_1¢Rp>) P
+Kp; (o(¢R) Ky (—igR,) + 1 (¢R,,) Ko(—i¢R,,)) E¢
(A4)

Q= (UO (¢Rp) Kl(_i¢Rp) + KO(_iQSEp) Jl(qslép)) ¢>Ec”10\,m
(A5)

where J,J; are the Bessel functions of the first kind and
Ky, K; are the modified Bessel functions of the second
kind. Further,

el 1/) _ Qu 2R,
- ¥pe2Dy’ T epy’ Yp= R cosa’ (A6)
¢ =V _ilxb’

and
" Ky _ R;In (R, /R,)cosa

— A7
ZEZDN ( )
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